These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interclonal variation of heavy metal interactions in Salix viminalis. Author: Landberg T, Greger M. Journal: Environ Toxicol Chem; 2002 Dec; 21(12):2669-74. PubMed ID: 12463563. Abstract: In the complex chemistry of soil, interactions between metals can be expected and these affect the uptake of the metals by the plants. The role of the metal-metal interaction may vary between different plants. This study was performed to investigate if variations exist in the interactions between Cd, Cu, and Zn on toxicity and accumulation of these metals in different clones of Salix viminalis. Two studies were performed. First, to study interaction at uptake, 10 clones with high or low accumulation capacity of Cd, Cu, and Zn, respectively, were treated with 0.3 microM Cd, 0.1 microM Cu, and 3 microM Zn (all three metals at the same time or separately). Second, to study the effect of one of the metals on the sensitivity of the plant to the other metals, three clones with high or low sensitivity to each of the three metals were used in a modified Weibull analysis. Examination of the results shows that interclonal variation exists in effects of metal interaction on metal accumulation and sensitivity exists. The uptake experiment showed that accumulation of Cu was decreased by the other metals, but only in clones with high Cu-accumulating properties because of decreased net uptake of Cu. The accumulation of Zn in roots was increased two- to threefold in all clones in the presence of the other metals because of a decreased translocation of Zn to the shoot. The accumulation of Cd was not changed by the presence of the other metals in any of the clones. The second experiment showed that the effect of interactions between the different metals on metal toxicity was present in all clones but appeared most frequently in the clone with high Zn resistance. Synergistic effects between Cu and Zn in the Zn-resistant clone suggested that this clone had evolved an additional site of toxic action that was absent in the other clones.[Abstract] [Full Text] [Related] [New Search]