These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: REDOR-based heteronuclear dipolar correlation experiments in multi-spin systems: rotor-encoding, directing, and multiple distance and angle determination.
    Author: Saalwächter K, Schnell I.
    Journal: Solid State Nucl Magn Reson; 2002; 22(2-3):154-87. PubMed ID: 12469809.
    Abstract:
    We review a variety of recently developed 1H-X heteronuclear recoupling techniques, which rely only on the homonuclear decoupling efficiency of very-fast magic-angle spinning. All these techniques, which are based on the simple rotational-echo, double-resonance (REDOR) approach for heteronuclear recoupling, are presented in a common context. Advantages and possibilities with respect to the complementary application of conventionally X and 1H-inversely detected variants are discussed in relation to the separability and analysis of multiple couplings. We present an improved and more sensitive approach to the determination of 1H-X dipolar couplings by spinning-sideband analysis, termed REREDOR, which is applicable to XHn groups in rigid and mobile systems and bears some similarity to more elaborate separated local-field methods. The estimation of medium-range 1H-X distances by analyzing signal intensities in two-dimensional REDOR correlation spectra in a model-free way is also discussed. More specifically, we demonstrate the possibility of combined distance and angle determination in H-X-H or X-H-X three-spin systems by asymmetric recoupling schemes and spinning-sideband analysis. Finally, an 1H-X correlation experiment is introduced which accomplishes high sensitivity by inverse (1H) detection and is therefore applicable to samples with 15N in natural abundance.
    [Abstract] [Full Text] [Related] [New Search]