These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Heme oxygenase-1: redox regulation and role in the hepatic response to oxidative stress. Author: Bauer M, Bauer I. Journal: Antioxid Redox Signal; 2002 Oct; 4(5):749-58. PubMed ID: 12470502. Abstract: Heme oxygenase (HO) catalyzes the oxidative cleavage of the alpha-mesocarbon of Fe-protoporphyrin-IX yielding equimolar amounts of biliverdin-IXalpha, free divalent iron, and carbon monoxide (CO). Among the three isoenzymes cloned to date, only HO-1 can be induced by a variety of seemingly disparate stimuli, most of which are linked by their ability to provoke oxidative stress. Although constitutive expression of HO-1 in the liver is restricted to Kupffer cells, the gene is inducible in nonparenchymal as well as in parenchymal liver cells. HO-1 induction potentially confers protection against oxidative stress in a variety of experimental models, such as liver ischemia/reperfusion secondary to transplantation or hemorrhage/resuscitation. Induction of HO-1 may protect the cell against oxidative injury by (a) controlling intracellular levels of "free" heme (a prooxidant), (b) producing biliverdin (an antioxidant), (c) improving nutritive perfusion via CO release, and (d) fostering the synthesis of the Fe-binding protein ferritin. Although protective effects of up-regulation of the HO pathway--presumably through production of bile pigments and CO--have been reported for a variety of cells and tissues, including the liver, evidence suggests that the protective action might be restricted to a rather narrow threshold of overexpression. High levels of HO-1 may even sensitize the cell to oxidative stress, e.g., through release of reactive iron. Transcriptional activation of the HO-1 gene is an integral part of the cellular response to oxidative stress, but its induction seems to be neither exclusively cytoprotective nor exclusively cytotoxic.[Abstract] [Full Text] [Related] [New Search]