These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A protein caught in a kinetic trap: structures and stabilities of insulin disulfide isomers.
    Author: Hua QX, Jia W, Frank BH, Phillips NF, Weiss MA.
    Journal: Biochemistry; 2002 Dec 17; 41(50):14700-15. PubMed ID: 12475219.
    Abstract:
    Proinsulin contains six cysteines whose specific pairing (A6-A11, A7-B7, and A20-B19) is a defining feature of the insulin fold. Pairing information is contained within A and B domains as demonstrated by studies of insulin chain recombination. Two insulin isomers containing non-native disulfide bridges ([A7-A11,A6-B7,A20-B19] and [A6-A7,A11-B7,A20-B19]), previously prepared by directed chemical synthesis, are metastable and biologically active. Remarkably, the same two isomers are preferentially formed from native insulin or proinsulin following disulfide reassortment in guanidine hydrochloride. The absence of other disulfide isomers suggests that the observed species exhibit greater relative stability and/or kinetic accessibility. The structure of the first isomer ([A7-A11,A6-B7,A20-B19], insulin-swap) has been described [Hua, Q. X., Gozani, S. N., Chance, R. E., Hoffmann, J. A., Frank, B. H., and Weiss, M. A. (1995) Nat. Struct. Biol. 2, 129-138]. Here, we demonstrate that the second isomer (insulin-swap2) is less ordered than the first. Nativelike elements of structure are retained in the B chain, whereas the A chain is largely disordered. Thermodynamic studies of guanidine denaturation demonstrate the instability of the isomers relative to native insulin (DeltaDeltaG(u) > 3 kcal/mol). In contrast, insulin-like growth factor I (IGF-I) and the corresponding isomer IGF-swap, formed as alternative products of a bifurcating folding pathway, exhibit similar cooperative unfolding transitions. The insulin isomers are similar in structure and stability to two-disulfide analogues whose partial folds provide models of oxidative folding intermediates. Each exhibits a nativelike B chain and less-ordered A chain. This general asymmetry is consistent with a hierarchical disulfide pathway in which nascent structure in the B chain provides a template for folding of the A chain. Structures of metastable disulfide isomers provide probes of the topography of an energy landscape.
    [Abstract] [Full Text] [Related] [New Search]