These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Preparation of the traditional Chinese medicine compound recipe heart-protecting musk pH-dependent gradient-release pellets.
    Author: Song H, Guo T, Zhang R, Zheng C, Ma Y, Li X, Bi K, Tang X.
    Journal: Drug Dev Ind Pharm; 2002 Nov; 28(10):1261-73. PubMed ID: 12476872.
    Abstract:
    In this study a sustained-release formulation of traditional Chinese medicine compound recipe (TCMCR) was developed by selecting heart-protecting musk pills (HPMP) as the model drug. Heart-protecting musk pellets were prepared with the refined medicinal materials contained in the recipe of HPMP. Two kinds of coated pellets were prepared by using pH-dependent methacrylic acid as film-forming material, which could dissolve under different pH values in accordance with the physiological range of human gastrointestinal tract (GIT). The pellets coated with Eudragit L30D-55, which dissolves at pH value over 5.5, were designed to disintegrate and release drug in the duodenum. The pellets coated with Eudragit L100-Eudragit S100 combinations in the ratio of 1:5, which dissolve at pH value 6.8 or above, were designed to disintegrate and release drug in the jejunum to ileum. The pellets coated with HPMC, which dissolves in water at any pH value, were designed to disintegrate and release drug in the stomach. Finally, the heart-protecting musk sustained-release capsules (HPMSRC) with a pH-dependent gradient-release pattern were prepared by encapsulating the above three kinds of coated pellets at a certain ratio in hard gelatin capsule. The results of dissolution of borneol (one of the active compounds of the TCMCR) in vitro demonstrated that the coating load and the pH value of the dissolution medium had little effect on the release rate of borneol from pellets coated with hydroxypropyl methyl cellulose (HPMC), but had a significant effect on the release rate of borneol from pellets coated with Eudragit L30D-55 or Eudragit L100-Eudragit S100 combinations in the ratio of 1:5. The pellets coated with Eudragit L30D-55 at 30% (w/w) coating load or above had little drug release in 0.1 mol/L HCl for 3 hr and started to release drug at pH value over 5.5. The pellets coated with Eudragit L100-Eudragit S100 combinations in the ratio of 1:5 at 36% (w/w) coating load or higher had little drug release in 0.1 mol/L HCl for 3 hr and in phosphate buffer of pH value 6.6 for 2 hr, and started to release drug at pH value 6.8 or above. The release profiles of lipophilic bornoel and hydrophilic total ginsenoside from HPMSRC, consisting of three kinds of pellets respectively coated at a certain ratio with HPMC, Eudragit L30D-55, and Eudragit L100-Eudragit S100 in the ratio of 1:5, showed a characteristic of pH-dependent gradient release under the simulated gastrointestinal pH conditions and no significant difference between them. The results indicated that various components with extremely different physicochemical properties in the pH-dependent gradient-release delivery system of TCMCR could release synchronously while sustained-releasing. This complies with the organic whole concept of compound compatibility of TCMCR.
    [Abstract] [Full Text] [Related] [New Search]