These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The inhibition of DNA synthesis by cannabinoids.
    Author: Carchman RA, Harris LS, Munson AE.
    Journal: Cancer Res; 1976 Jan; 36(1):95-100. PubMed ID: 1248011.
    Abstract:
    Several of the cannabinoids found in marihuana have been shown to inhibit tumor growth and increase the life-span of mice bearing the Lewis lung adenocarcinoma. When trypsin-dispersed isolated Lewis lung cells are incubated in vitro, they maintain their capacity to carry out macromolecular synthesis (RNA, DNA, protein). This process can be inhibited by cytosine arabinoside, actinomycin D, or methyl-1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea, whereas cyclophosphamide, an agent that must be bioactivated, was inactive. Inhibition of DNA synthesis as measured by [3H]thymidine uptake into acid-insoluble material was used as an index of cannabinoid activity against isolated Lewis lung cells, L1210 leukemia cells, and bone marrow cells incubated in vitro delta9-, delta8-, 1-hydroxy-3-n pentyl-, and 1-delta8-tetrahydrocannabinol, and cannabinol demonstrated a dose-dependent inhibition of DNA synthesis whereas cannabidiol and 1-hydroxy-3-n-pentylcannabidiol were markedly less inhibitory in our in vitro cell systems. Furthermore, our in vitro observations with these cannabinoids are supported by in vivo tumor inhibition studies. Ring modifications as in cannabichromene or cannabicyclol abolish in vitro activity as does dihydroxylation at the 8beta and 11 positions of 1-delta9-trans-tetrahydrocannabinol. Delta9-trans-tetrahydrocannabinol demonstrated the least toxicity of all inhibitory cannabinoids in vivo; this is supported by its lesser effect on bone marrow DNA synthesis in vitro.
    [Abstract] [Full Text] [Related] [New Search]