These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mitochondrial repair of 8-oxoguanine is deficient in Cockayne syndrome group B. Author: Stevnsner T, Nyaga S, de Souza-Pinto NC, van der Horst GT, Gorgels TG, Hogue BA, Thorslund T, Bohr VA. Journal: Oncogene; 2002 Dec 12; 21(57):8675-82. PubMed ID: 12483520. Abstract: Reactive oxygen species, which are prevalent in mitochondria, cause oxidative DNA damage including the mutagenic DNA lesion 7,8-dihydroxyguanine (8-oxoG). Oxidative damage to mitochondrial DNA has been implicated as a causative factor in a wide variety of degenerative diseases, and in cancer and aging. 8-oxoG is repaired efficiently in mammalian mitochondrial DNA by enzymes in the base excision repair pathway, including the 8-oxoguanine glycosylase (OGG1), which incizes the lesion in the first step of repair. Cockayne syndrome (CS) is a segmental premature aging syndrome in humans that has two complementation groups, CSA and CSB. Previous studies showed that CSB-deficient cells have reduced capacity to repair 8-oxoG. This study examines the role of the CSB gene in regulating repair of 8-oxoG in mitochondrial DNA in human and mouse cells. 8-oxoG repair was measured in liver cells from CSB deficient mice and in human CS-B cells carrying expression vectors for wild type or mutant forms of the human CSB gene. For the first time we report that CSB stimulates repair of 8-oxoG in mammalian mitochondrial DNA. Furthermore, evidence is presented to support the hypothesis that wild type CSB regulates expression of OGG1.[Abstract] [Full Text] [Related] [New Search]