These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Insight into the factors influencing the backbone dynamics of three homologous proteins, dendrotoxins I and K, and BPTI: FTIR and time-resolved fluorescence investigations. Author: Hollecker M, Vincent M, Gallay J, Ruysschaert JM, Goormaghtigh E. Journal: Biochemistry; 2002 Dec 24; 41(51):15267-76. PubMed ID: 12484765. Abstract: Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, combined with hydrogen/deuterium exchange technique and time-resolved fluorescence spectroscopy, has been used to investigate the changes in structure and dynamics that underlie the thermodynamic stability differences observed for three closely homologous proteins: dendrotoxins I and K, and bovine pancreatic trypsin inhibitor (BPTI). The experiments were performed on proteins under their native state and a modified form, obtained by selective reduction of a disulfide bond at the surface of the molecule, increasing slightly the backbone flexibility without changing the average structure. The data confirmed the high local as well as global rigidity of BPTI. In protein K, the exchange process was slow during the first 2 h of exchange, presumably reflecting a compact three-dimensional conformation, and then increased rapidly, the internal amide protons of the beta-strands exchanging 10-fold faster than in BPTI or protein I. The most probable destabilizing element was identified as Pro32, in the core of the beta-sheet. Protein I was found to present a 10% more expanded volume than protein K or BPTI, and there is a possible correlation between the resulting increased flexibility of the molecule and the lower thermodynamic stability observed for this protein. Interestingly, the interior amide protons of the beta-sheet structure were found to be as protected against exchange in protein I as in BPTI, suggesting that, although globally more flexible than that of Toxin K or BPTI, the structure of Toxin I could be locally quite rigid. The structural factors suspected to be responsible for the differences in internal flexibility of the two toxins could play a significant role in determining their functional properties.[Abstract] [Full Text] [Related] [New Search]