These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Detrimental effect of protracted hyperglycaemia on beta-cell neogenesis in a mouse murine model of diabetes. Author: Guz Y, Torres A, Teitelman G. Journal: Diabetologia; 2002 Dec; 45(12):1689-96. PubMed ID: 12488958. Abstract: AIMS/HYPOTHESIS: Previous studies have shown that new beta cells differentiate from intra-islet precursors in pancreatic islets of mice in which diabetes is induced by injecting a high dose of the beta-cell toxin streptozotocin. Moreover, the re-establishment of euglycaemia by insulin therapy 1 day after streptozotocin treatment improved the process of regeneration. We sought to assess whether a 1-week delay in the restoration of euglycaemia would affect beta-cell regeneration. METHODS: Adult CD-1 mice were injected with 200 mg/kg of streptozotocin. One group of mice remained hyperglycaemic throughout the experiment while a second group became normoglycaemic following the administration of insulin therapy 1 week after the injection of streptozotocin. Pancreata removed at different times after treatment were processed for visualization ofbeta precursor-cell markers and insulin by confocal microscopy. RESULTS: New beta cells appeared in islets of streptozotocin-treated mice after restoration of normoglycaemia. Like islets of streptozotocin mice in which blood glucose concentrations were rapidly restored, islets of mice that became normoglycaemic 1 week after streptozotocin treatment also had two potential insulin precursor cell types. Protracted hyperglycaemia however, had several harmful effects on insulin cell neogenesis, such as a reduction in the number of euglycaemic mice with successful beta-cell regeneration and a decrease in the number and survival of the newly differentiated insulin-containing cells. CONCLUSION/INTERPRETATION: These results indicate that islets gradually lose their regenerative potential when they are exposed to high circulating glucose concentrations for an extended period of time.[Abstract] [Full Text] [Related] [New Search]