These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. Author: Gibson RP, Turkenburg JP, Charnock SJ, Lloyd R, Davies GJ. Journal: Chem Biol; 2002 Dec; 9(12):1337-46. PubMed ID: 12498887. Abstract: Trehalose is a nonreducing disaccharide that plays a major role in many organisms, most notably in survival and stress responses. In Mycobacterium tuberculosis, it plays a central role as the carbohydrate core of numerous immunogenic glycolipids including "cord factor" (trehalose 6,6'-dimycolate). The classical pathway for trehalose synthesis involves the condensation of UDP-glucose and glucose-6-phosphate to afford trehalose-6-phosphate, catalyzed by the retaining glycosyltransferase OtsA. The configurations of two anomeric positions are set simultaneously, resulting in the formation of a double glycoside. The three-dimensional structure of the Escherichia coli OtsA, in complex with both UDP and glucose-6-phosphate, reveals the active site at the interface of two beta/alpha/beta domains. The overall structure and the intimate details of the catalytic machinery reveal a striking similarity to glycogen phosphorylase, indicating a strong evolutionary link and suggesting a common catalytic mechanism.[Abstract] [Full Text] [Related] [New Search]