These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cancer immunotherapy with interleukin 12 and granulocyte-macrophage colony-stimulating factor-encapsulated microspheres: coinduction of innate and adaptive antitumor immunity and cure of disseminated disease.
    Author: Hill HC, Conway TF, Sabel MS, Jong YS, Mathiowitz E, Bankert RB, Egilmez NK.
    Journal: Cancer Res; 2002 Dec 15; 62(24):7254-63. PubMed ID: 12499267.
    Abstract:
    Tumor cells, injected s.c., were maintained until spontaneous metastases to the lungs were established in all of the mice. Mice were then treated with a single dose of cytokine-encapsulated biodegradable microspheres injected directly into primary s.c. tumors to achieve a local and sustained release of interleukin 12 (IL-12), granulocyte-macrophage colony-stimulating factor (GM-CSF), or a combination of these cytokines to the tumor microenvironment. The s.c. tumors were surgically excised 6 days after microsphere injections, and the mice were monitored for recurrence of the primary tumor, survival, and progression of metastatic disease. Combined neoadjuvant treatment with IL-12 and GM-CSF microspheres was superior to all other treatments in reducing the recurrence of primary tumors, enhancing postoperative survival, and suppressing established metastatic disease. Long-term survival analysis demonstrated that intratumoral injection of IL-12 + GM-CSF-loaded microspheres resulted in the complete cure of disseminated disease in the majority of the animals. The addition of systemic low-dose IL-2 therapy to the treatment protocol resulted in the loss of the antitumor activity induced by IL-12 + GM-CSF treatment. In vivo lymphocyte subset depletions established that both T- and natural killer-cell subsets were required for the suppression of primary and metastatic tumors. Long-term, tumor-specific T-cell activity was demonstrated by immunohistochemical analysis of metastatic lesions, IFN-gamma enzyme-linked immunosorbent spot (ELISPOT) assays and tumor challenge studies. These results establish that neoadjuvant in situ tumor immunotherapy with IL-12 + GM-CSF microspheres induces both innate and adaptive antitumor immune responses resulting in the eradication of disseminated disease.
    [Abstract] [Full Text] [Related] [New Search]