These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The refined atomic structure of carbonic anhydrase II at 1.05 A resolution: implications of chemical rescue of proton transfer. Author: Duda D, Govindasamy L, Agbandje-McKenna M, Tu C, Silverman DN, McKenna R. Journal: Acta Crystallogr D Biol Crystallogr; 2003 Jan; 59(Pt 1):93-104. PubMed ID: 12499545. Abstract: Using synchrotron radiation and a CCD detector, X-ray data have been collected at 100 K for the His64Ala mutant of human carbonic anhydrase II complexed with 4-methylimidazole (4-MI) to a maximal 1.05 A resolution, allowing full anisotropic least-squares refinement. The refined model has a conventional R factor of 15.7% for all reflections. The C(alpha) coordinates of the model presented here have an r.m.s. deviation of 0.10 A relative to the previously determined structure at 1.6 A resolution. Several amino-acid residues (six of the 255 observed) have been identified with multiple rotamer side-chain conformations. C, N and O atoms can be differentiated with selective electron-density map contouring. The estimated standard deviations for all main-chain non-H atom bond lengths and angles are 0.013 and 0.030 A, respectively, based on unrestrained full-matrix least-squares refinement. This structure gives detailed information about the tetrahedrally arranged zinc ion coordinated by three histidine N atoms (His94 N(epsilon 2), His96 N(epsilon2) and His119 N(delta1)) and a water/hydroxide, the multiple binding sites of the proton chemical rescue molecule 4-MI and the solvent networks linking the zinc-bound water/hydroxide and 4-MI molecules. This structure presents the highest resolution structure of a carbonic anhydrase isozyme so far determined and adds to the understanding of proton-transfer processes.[Abstract] [Full Text] [Related] [New Search]