These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: ETA, mixed ETA/ETB receptor antagonists, and protein kinase C inhibitor prevent acute hypoxic pulmonary vasoconstriction: influence of potassium channels.
    Author: Goirand F, Bardou M, Guerard P, Dumas JP, Rochette L, Dumas M.
    Journal: J Cardiovasc Pharmacol; 2003 Jan; 41(1):117-25. PubMed ID: 12500029.
    Abstract:
    The aims of this study were to investigate the effects of a selective ETA (BQ-123), a selective ETB (BQ-788), and a specific mixed ETA/ETB receptor antagonist (bosentan) on the pulmonary vasoconstriction induced by hypoxia in the isolated perfused rat lung, and the role of nitric oxide, adenosine triphosphate-sensitive (KATP), large conductance Ca+-activated (BKCa) and 4-aminopyridine-sensitive voltage-gated K channels (K+) in the relaxant effects of the selective ETA receptor antagonist BQ-123 and a protein kinase C inhibitor, bisindolylmaleimide I. K+ channels were inhibited by glibenclamide, charybdotoxin, and 4-aminopyridine and nitric oxide synthase by L-NG-nitroarginine methyl ester (L-NAME). Hypoxic ventilation produced a significant pressure response (+57%, p < 0.001). BQ-123, bosentan, and bisindolylmaleimide I induced a concentration-dependent decrease of the hypoxic pressure response (p < 0.001), whereas BQ-788 did not exhibit any inhibitory effect against hypoxic pressure response. Glibenclamide, charybdotoxin, and 4-aminopyridine partially opposed the inhibitory effects elicited by BQ-123 (p < 0.05), but L-NAME did not modify these effects. The effects of bisindolylmaleimide I on hypoxic pressure response were unaffected by glibenclamide, charybdotoxin, or 4-aminopyridine. The authors conclude that (a) ETA receptors and protein kinase C are involved in the modulation of hypoxic pulmonary vasoconstriction; and (b) the ETA antagonist BQ-123 opposes hypoxic pulmonary vasoconstriction through KATP, KV, and BKCa channels, differing in this from the protein kinase C inhibitor bisindolylmaleimide I. These results suggest that BQ-123 operates through a mechanism independent of bisindolylmaleimide I-inhibited protein kinase C isoforms.
    [Abstract] [Full Text] [Related] [New Search]