These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mono- or dual-phosphorylation of akt kinase is regulated by distinct receptors that involve the common insulin receptor substrate.
    Author: Schnyder B, Lahm H, Pittet M, Schnyder-Candrian S.
    Journal: J Recept Signal Transduct Res; 2002; 22(1-4):213-28. PubMed ID: 12503617.
    Abstract:
    We have previously shown that the interleukin (IL)-4 signal transduction involves the Insulin Receptor Substrate (IRS) in human colorectal carcinoma cells LS513. In the present study it was tested whether IL-4 counters Insulin-like Growth Factor (IGF)-1 through competition at the IRS signal transduction pathway and, thus, induces a molecular "insulin resistance" or whether IL-4 invokes an alternative signal transduction. The activated receptors of IL-4 and IGF-I both docked to IRS-1 and IRS-2 and invoked IRS complex formation with phosphatidylinositol (PI) 3-kinase, as assessed by immunoprecipitation and detection of the precipitated compounds by immunoblot analysis. Both, IL-4 and IGF-1, signaling pathways induced phosphorylation of Akt kinase in a PI 3-kinase-dependent manner, as assessed by addition of the PI 3-kinase inhibitor Ly294002. Interleukin-4 stimulation induced mono-phosphorylation at serine residue S473 of Akt kinase but failed to activate the kinase. Insulin-like growth factor-1 stimulation invoked dual-phosphorylation at S473 and T308 of Akt kinase and subsequent activation of the kinase. When LS513 cells were treated with IL-4 to induce mono-phosphorylation of Akt, dual- phosphorylation and activation of Akt kinase in response to IGF-1 were still intact. Interleukin-4 yet reduced cell growth by at least 50% both, in the absence and presence of growth factor IGF-1. In the LS513 cells, IL-4 stimulated phosphorylation of Jak2, an adapter molecule at the IL-4 receptor, and phosphorylation of transcription factor Stat6 both, in the absence and presence of IGF-1. We found a similar IL-4 signal transduction and growth suppression in multiple human cell cultures, including primary cells. Our findings indicate that the molecular mechanism underlying growth suppression by IL-4 may depend on gene-expression but not on "insulin/growth factor resistance" at IRS.
    [Abstract] [Full Text] [Related] [New Search]