These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: GEA3162 stimulates Ca2+ entry in neutrophils. Author: Wang JP. Journal: Eur J Pharmacol; 2003 Jan 05; 458(3):243-9. PubMed ID: 12504779. Abstract: We showed that 5-amino-3-(3,4-dichlorophenyl)1,2,3,4-oxatriazolium (GEA3162), a lipophilic nitric oxide (NO)-releasing agent, induced Ca(2+) entry into rat neutrophils in a concentration-dependent manner, whereas the guanylyl cyclase inhibitors, 6-anilino-5,8-quinolinequinone (LY83583) and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), had no effect on GEA3162-induced response. The GEA3162-induced Ca(2+) entry was not observed in a Ca(2+)-free medium. GEA3162 did not potentiate but reduced the store-emptying activated Ca(2+) entry caused by cyclopiazonic acid. Stimulation of cells with GEA3162 in the absence of extracellular Ca(2+) followed by addition of cations showed that only Ca(2+) but not Ba(2+) and Sr(2+) entry occurs. Store-operated Ca(2+) entry was sensitive to La(3+) and Ni(2+) inhibition, whereas the GEA3162-induced Ca(2+) entry was sensitive to La(3+) but resistant to Ni(2+). cis-N-(2-Phenylcyclopentyl)azacyclotridec-1-en-2-amine (MDL-12,330A) and calyculin A diminished the Ca(2+) entry activated by cyclopiazonic acid as well as by GEA3162. In contrast, 2-aminoethyldiphenyl borate (2-APB) diminished cyclopiazonic acid-but enhanced GEA3162-induced [Ca(2+)](i) change. Genistein effectively attenuated the cyclopiazonic acid-but slightly inhibited GEA3162-induced [Ca(2+)](i) change. Application of neomycin and high extracellular Ca(2+) concentration did not induce [Ca(2+)](i) rise. These data suggest that GEA3162 induced Ca(2+) entry and regulated Ca(2+) signal, through direct protein thiol oxidation. The action of GEA3162 demonstrates characteristics that distinguish it from the store-operated mechanism in neutrophils and therefore is likely to represent an entirely distinct pathway. Extracellular Ca(2+)-sensing receptor is not existing in neutrophils.[Abstract] [Full Text] [Related] [New Search]