These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chimeric DNA-RNA hammerhead ribozyme targeting PDGF A-chain mRNA specifically inhibits neointima formation in rat carotid artery after balloon injury. Author: Kotani M, Fukuda N, Ando H, Hu WY, Kunimoto S, Saito S, Kanmatsuse K. Journal: Cardiovasc Res; 2003 Jan; 57(1):265-76. PubMed ID: 12504837. Abstract: OBJECTIVE: Restenosis of the coronary artery after percutaneous transluminal coronary angioplasty (PTCA) occurs in 30-50% of patients and remains a major clinical problem. We developed ribozyme that targets platelet-derived growth factor (PDGF) A-chain mRNA as a gene therapy for restenosis after PTCA. Thus, we examined the effects of a chimeric DNA-RNA ribozyme targeting PDGF A-chain mRNA on neointima formation in rat carotid artery after balloon injury and evaluated its specificity for PDGF A-chain mRNA by microarray analysis. METHODS: Rat carotid artery was injured with a 2F Fogarty catheter, and PDGF A-chain specific ribozyme was delivered to the injured artery with polyethylenimine. Two weeks after injury, the artery was removed, and the intima/media (I/M) ratio was evaluated. Six hours after injury, mRNA was extracted with oligo dT cellulose, and expression of PDGF A-chain mRNA was evaluated by reverse transcription-polymerase chain reaction. Expression of PDGF-AA protein was evaluated by Western blot analysis. Expression of 970 genes was evaluated by microarray (GeneChip, Affimetrix Inc). RESULTS: FITC-labeled ribozyme was taken up into the midlayer smooth muscle of the carotid artery until 24 h after balloon injury. Two and 5 microg of ribozyme significantly reduced neointima formation by 44 and 55% of control levels, respectively, in a dose-dependent manner. Ribozyme markedly inhibited expression of PDGF A-chain mRNA as well as production of PDGF-AA protein in injured vessels. Microarray analysis revealed that expression of 525 genes was increased after balloon injury. These genes included FLK-1, interleukin-1 receptor, retinoic acid receptor alpha2 isoform, heat shock protein, MAP kinase kinase, Fas antigen, G6Pase, PI-5-P-kinase, p38 MAP kinase, proliferating cell nuclear antigen, transforming growth factor-beta, extracellular signal-related kinase, and fibroblast growth factor receptor. With respect to expression of cytokine and growth factor mRNAs, the best ribozyme specifically inhibited expression of PDGF A-chain mRNA. CONCLUSIONS: Our chimeric DNA-RNA hammerhead ribozyme targeting PDGF A-chain mRNA inhibited neointima formation in rat carotid artery after balloon injury with specific inhibition of expression of PDGF A-chain mRNA, suggesting that this ribozyme may be useful for therapy of restenosis of coronary artery after PTCA.[Abstract] [Full Text] [Related] [New Search]