These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of modulator asynchrony of sinusoidal and noise modulators on frequency and amplitude modulation detection interference.
    Author: Gockel H, Carlyon RP, Deeks JM.
    Journal: J Acoust Soc Am; 2002 Dec; 112(6):2975-84. PubMed ID: 12509019.
    Abstract:
    The effect on modulation detection interference (MDI) of timing of gating of the modulation of target and interferer, with synchronously gated carriers, was investigated in three experiments. In a two-interval, two-alternative forced choice adaptive procedure, listeners had to detect 15 Hz sinusoidal amplitude modulation (AM) or frequency modulation (FM) imposed for 200 ms in the temporal center of a 600 ms target sinusoidal carrier. In the first experiment, 15 Hz sinusoidal FM was imposed in phase on both target and interferer carriers. Thresholds were lower for nonoverlapping than for synchronous modulation of target and interferer, but MDI still occurred for the former. Thresholds were significantly higher when the modulators were gated synchronously than when the interferer modulator was gated on before and off after that of the target. This contrasts with the findings of Oxenham and Dau [J. Acoust. Soc. Am. 110, 402-408 (2001)], who reported no effect of modulation asynchrony on AM detection thresholds, using a narrowband noise modulator. Using FM, experiment 2 showed that for temporally overlapping modulation of target and interferer, modulator asynchrony had no significant effect when the interferer was modulated by a narrowband noise. Experiment 3 showed that, for AM, synchronous gating of modulation of the target and interferer produced lower thresholds than asynchronous gating, especially for sinusoidal modulation of the interferer. Results are discussed in terms of specific cues available for periodic modulation, and differences between perceptual grouping on the basis of common AM and FM.
    [Abstract] [Full Text] [Related] [New Search]