These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Opposite base specificity in excision of pyrimidine ring-opened 1,N6-ethenoadenine by thymine glycol-DNA-glycosylases. Author: Bajek M, Cieśla JM, Tudek B. Journal: DNA Repair (Amst); 2002 Mar 28; 1(3):251-7. PubMed ID: 12509256. Abstract: A highly mutagenic DNA lesion, 1,N6-ethenoadenine ( epsilon A) is chemically unstable and either depurinates or converts to a pyrimidine ring-opened product upon water molecule addition to the C(2)z.sbnd;N(3) bond in epsilon dA (compound B). Compound B subsequently undergoes deformylation to yield compound C, which depurinates in the final step of the epsilon A rearrangement pathway. We have previously shown that epsilon A rearrangement products are not repaired by human N-methylpurine-DNA-glycosylase, which excises parental epsilon A. Compound B was shown to be eliminated from a B:T pair by Escherichia coli formamidopyrimidine-DNA-glycosylase (Fpg protein) and endonuclease III (Nth protein). Fpg protein excised B also from a B:C pair, and much less efficiently from B:A and B:G pairs [J. Biol. Chem. 276 (2001) 21821]. Here we show that efficiency of B excision by the Nth protein also depends on the opposite base in the pair. Most efficient repair is observed when this derivative is paired with dG (Km=18nM, kcat=12) and is less favourable when paired with dC (Km=40nM, kcat=13) and dT (Km=32nM, kcat=11). In physiological conditions, compound B is probably not excised by the Nth-glycosylase from a B:A pair, or from a single-stranded DNA, since kinetic constants in these conditions are an order or two orders of magnitude higher than when B is paired with T, C or G. A similar specificity for B excision was found for Saccharomyces cerevisiae Ntg2-glycosylase. Thus, when paired with A, an epsilon A derivative might be more persistent than when paired with other bases and give rise to AT-->TA transversions.[Abstract] [Full Text] [Related] [New Search]