These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biosynthesis of chondroitin/dermatan sulfate. Author: Silbert JE, Sugumaran G. Journal: IUBMB Life; 2002 Oct; 54(4):177-86. PubMed ID: 12512856. Abstract: Chondroitin sulfate and dermatan sulfate are synthesized as galactosaminoglycan polymers containing N-acetylgalactosmine alternating with glucuronic acid. The sugar residues are sulfated to varying degrees and positions depending upon the tissue sources and varying conditions of formation. Epimerization of any of the glucuronic acid residues to iduronic acid at the polymer level constitutes the formation of dermatan sulfate. Chondroitin/dermatan glycosaminoglycans are covalently attached by a common tetrasaccharide sequence to the serine residues of core proteins while they are adherent to the inner surface of endoplasmic reticulum/Golgi vesicles. Addition of the first sugar residue, xylose, to core proteins begins in the endoplasmic reticulum, followed by the addition of two galactose residues by two distinct glycosyl transferases in the early cis/medial regions of the Golgi. The linkage tetrasaccharide is completed in the medial/trans Golgi by the addition of the first glucuronic acid residue, followed by transfer of N-acetylgalactosamine to initiate the formation of a galactosaminoglycan rather than a glucosaminoglycan. This specific N-acetylgalactosaminyl transferase is different from the chondroitin synthase involved in generation of the repeating disaccharide units to form the chondroitin polymer. Sulfation of the chondroitin polymer by specific sulfotransferases occurs as the polymer is being formed. All the enzymes in the pathway for synthesis have been cloned, with the exception of the glucuronyl to iduronyl epimerase involved in the formation of dermatan residues.[Abstract] [Full Text] [Related] [New Search]