These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Components of litter size in gilts with different prolactin receptor genotypes. Author: van Rens BT, Evans GJ, van der Lende T. Journal: Theriogenology; 2003 Feb; 59(3-4):915-26. PubMed ID: 12517393. Abstract: Behavioral estrus and components of litter size at Day 35/36 of pregnancy were studied in gilts with prolactin receptor (PRLR) genotype AA (n=9), AB (n=25), and BB (n=22). This PRLR polymorphism (two alleles, A and B) has been associated with litter size, although it is not known whether the polymorphism itself causes differences in litter size or whether it is a marker for a closely linked causative gene. Estrus length in three successive estrous cycles was not affected by genotype, but estrous cycle length tended (P<0.1) to be longer for AA gilts compared to AB and BB gilts. AA gilts had a significantly (P<0.05) higher ovulation rate (21.5+/-0.9) than BB gilts (18.7+/-0.6), resulting in a numerically higher number of embryos at Day 35/36 (17.0+/-1.3, 15.6+/-0.8, and 13.7+/-0.9 for AA, AB, and BB gilts, respectively) which may lead to a subsequent difference in litter size. Ovulation rate of AB gilts (20.0+/-0.5) was intermediate. Genotype affected the total weight of the ovaries (P<0.05). Even after subtraction of the total weight of corpora lutea, ovarian weight in AA gilts was highest (16.6+/-1.0 g), in BB lowest (13.4+/-0.6g), and in AB gilts intermediate (15.0+/-0.6g; P<0.05). Unlike AB gilts, in AA and BB gilts uterine length was adapted to litter size, which led to longer (P<0.05) uteri for AA gilts (669+/-28 cm) compared to BB gilts (566+/-18 cm). Furthermore, embryos of AA gilts had heavier placentae (52.5+/-3.4 g) and larger implantation surface areas (309+/-19 cm(2)) than embryos of BB (42.0+/-2.3g, P<0.05; 256+/-12 cm(2), P<0.1) or AB (43.2+/-2.0 g, P<0.1; 257+/-11 cm(2), P<0.05) gilts. Results of this experiment show that the PRLR gene or a very closely linked gene affects porcine ovaries, uterus, and placenta in a way that might lead to differences in litter size. Since other genes and also environmental factors, however, might change the effect within the 112 days to parturition, it is preferable to state that the PRLR gene is a candidate gene for ovulation rate rather than for litter size.[Abstract] [Full Text] [Related] [New Search]