These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Downregulation of renal aquaporins in response to unilateral ureteral obstruction.
    Author: Li C, Wang W, Knepper MA, Nielsen S, Frøkiaer J.
    Journal: Am J Physiol Renal Physiol; 2003 May; 284(5):F1066-79. PubMed ID: 12517734.
    Abstract:
    The expression of aquaporin-2 (AQP2) is decreased in rats with bilateral ureteral obstruction (BUO) and unilateral ureteral obstruction (UUO). Therefore, the expression of additional renal aquaporins (AQP1-4) and phosphorylated AQP2 (p-AQP2), known to play a role in urinary concentration, was examined in a Wistar rat model with 24 h of UUO. In obstructed kidneys, immunoblotting revealed a significant decrease in the expression of inner medullary AQP2 to 42 +/- 4, p-AQP2 to 23 +/- 5, AQP3 to 19 +/- 6, AQP4 to 11 +/- 5, and AQP1 to 64 +/- 8% of sham levels. AQP1 expression located in the proximal tubule decreased to 74 +/- 4% of sham levels (P < 0.05). Immunocytochemistry confirmed the downregulation of AQP3, AQP4, and p-AQP2. In contralateral nonobstructed kidneys, immunoblotting also revealed significant reductions of AQP1 in the inner medulla, outer medulla, and cortex, whereas expression of AQP2, AQP3, AQP4, and p-AQP2 was unchanged. Furthermore, we collected the urine from both obstructed and nonobstructed kidneys for 2 h, respectively, after 24 h of UUO. Urine collection from obstructed kidneys during 2 h after release of UUO revealed a significant reduction in urine osmolality and solute-free water reabsorption (T(c)H(2)O). Moreover, an increase in urine production and T(c)H(2)O was observed in contralateral kidneys. To examine whether vasopressin-independent mechanisms are involved in AQP2 regulation, vasopressin-deficient Brattleboro (BB) rats with 24 h of UUO were examined. Immunoblotting revealed downregulation of AQP2, p-AQP2, AQP3, and AQP1 in obstructed kidneys and downregulation of p-AQP2 and AQP1 in nonobstructed kidneys. In conclusion, 1) UUO is associated with severe downregulation of AQP2, AQP3, AQP4, and AQP1; thus all of these AQPs may play important roles in the impaired urinary concentrating capacity in the obstructed kidney; 2) the reduced levels of AQP1 in the nonobstructed kidney may contribute to the compensatory increase in urine production; and 3) downregulation of AQPs in BB rats supports the view that vasopressin-independent pathways may be involved in AQP2 and AQP3 regulation in the obstructed kidney.
    [Abstract] [Full Text] [Related] [New Search]