These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Onset of carbon catabolite repression in Aspergillus nidulans. Parallel involvement of hexokinase and glucokinase in sugar signaling. Author: Flipphi M, van de Vondervoort PJ, Ruijter GJ, Visser J, Arst HN, Felenbok B. Journal: J Biol Chem; 2003 Apr 04; 278(14):11849-57. PubMed ID: 12519784. Abstract: The role of hexose phosphorylating enzymes in the signaling of carbon catabolite repression was investigated in the filamentous fungus Aspergillus nidulans. A d-fructose non-utilizing, hexokinase-deficient (hxkA1, formerly designated frA1) strain was utilized to obtain new mutants lacking either glucokinase (glkA4) or both hexose kinases (hxkA1/glkA4). d-Glucose and d-fructose phosphorylation is completely abolished in the double mutant, which consequently cannot grow on either sugar. The glucokinase single mutant exhibits no nutritional deficiencies. Three repressible diagnostic systems, ethanol utilization (alcA and alcR genes), xylan degradation (xlnA), and acetate catabolism (facA), were analyzed in these hexose kinase mutants at the transcript level. Transcriptional repression by d-glucose is fully retained in the two single kinase mutants, whereas the hexokinase mutant is partially derepressed for d-fructose. Thus, hexokinase A and glucokinase A compensate each other for carbon catabolite repression by d-glucose in the single mutants. In contrast, both d-glucose and d-fructose repression are severely impaired for all three diagnostic systems in the double mutant. Unlike the situation in Saccharomyces cerevisiae, the hexose phosphorylating enzymes play parallel roles in glucose repression in A. nidulans.[Abstract] [Full Text] [Related] [New Search]