These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glutamate and aspartate do not exhibit the same changes in their extracellular concentrations in the rat striatum after N-methyl-D-aspartate local administration.
    Author: Parrot S, Bert L, Renaud B, Denoroy L.
    Journal: J Neurosci Res; 2003 Feb 01; 71(3):445-54. PubMed ID: 12526032.
    Abstract:
    To determine whether glutamate (Glu) and aspartate (Asp) undergo a similar regulation of their extracellular levels, Glu and Asp were simultaneously monitored in the striatum of anesthetized rats after local N-methyl-D-aspartate (NMDA) receptor stimulation, using 1-min in vivo microdialysis coupled to capillary electrophoresis with laser-induced fluorescence detection. Application of NMDA (10 min, 10(-3) M) through the dialysis probe induced 1) an increase (+50%) in Asp during the NMDA administration and 2) a surprising biphasic effect on Glu, with a rapid increase (+30%) and a return to baseline before the end of NMDA application, followed by a second increase (+40%) occurring after and linked to the end of NMDA administration. When studied in the presence of 10 microM tetrodotoxin (TTX) or 0.1 mM Ca(2+), the increase in Asp was partially TTX-dependent, and the early increase in Glu appeared to be partially TTX and Ca(2+) dependent, whereas the second increase in Glu was not. The second increase in Glu level was still present when NMDA antagonists (AP5 or MK-801) were administered at the end of NMDA application. Finally, only extracellular Asp was increased through application of lower NMDA concentrations (10(-4) M, 10(-5) M), whereas extracellular Glu was not affected. In conclusion, these results suggest a differential control of Glu and Asp extracellular levels in rat striatum by distinct mechanisms linked to NMDA receptors and involving neuronal or nonneuronal release.
    [Abstract] [Full Text] [Related] [New Search]