These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chemical synthesis of methyl 6'-alpha-maltosyl-alpha-maltotrioside and its use for investigation of the action of starch synthase II. Author: Damager I, Olsen CE, Blennow A, Denyer K, Møller BL, Motawia MS. Journal: Carbohydr Res; 2003 Jan 20; 338(2):189-97. PubMed ID: 12526843. Abstract: The branched pentasaccharide methyl 6'-alpha-maltosyl-alpha-maltotrioside was chemically synthesised and investigated as a primer for particulate starch synthase II (SSII) using starch granules prepared from the low-amylose pea mutant lam as the enzyme source. For chemical synthesis, the trichloroacetimidate activation method was used to synthesise methyl O-(2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl)-(1-->4)-O-(2,3,6-tri-O-benzyl-alpha-D-glucopyranosyl)-(1-->6)-O-[(2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl-(1-->4)]-O-(2,3-di-O-benzyl-alpha-D-glucopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-alpha-D-glucopyranoside, which was then debenzylated to provide the desired branched pentasaccharide methyl 6'-alpha-maltosyl-alpha-maltotrioside as documented by 1H and 13C NMR spectroscopy. Using a large excess of the maltoside, the pentasaccharide was tested as a substrate for starch synthase II (SSII). Both of the non-reducing ends of methyl 6'-alpha-maltosyl-alpha-maltotrioside were extended equally resulting in two hexasaccharide products in nearly equal amounts. Thus, SSII catalyses an equimolar and non-processive elongation reaction of this substrate. Accordingly, the presence of the alpha-1,6 linkages does not dictate a specific structure of the pentasaccharide in which only one of the two non-reducing ends are available for extension.[Abstract] [Full Text] [Related] [New Search]