These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of calcium in metabolic signaling between cardiac sarcoplasmic reticulum and mitochondria in vitro. Author: Balaban RS, Bose S, French SA, Territo PR. Journal: Am J Physiol Cell Physiol; 2003 Feb; 284(2):C285-93. PubMed ID: 12529248. Abstract: The role of Ca(2+) as a cytosolic signaling molecule between porcine cardiac sarcoplasmic reticulum (SR) ATPase and mitochondrial ATP production was evaluated in vitro. The Ca(2+) sensitivity of these processes was determined individually and in a reconstituted system with SR and mitochondria in a 0.5:1 protein-to-cytochrome aa(3) ratio. The half-maximal concentration (K(1/2)) of SR ATPase was 335 nM Ca(2+). The ATP synthesis dependence was similar with a K(1/2) of 243 nM for dehydrogenases and 114 nM for overall ATP production. In the reconstituted system, Ca(2+) increased thapsigargin-sensitive ATP production (maximum approximately 5-fold) with minimal changes in mitochondrial reduced nicotinamide adenine dinucleotide (NADH). NADH concentration remained stable despite graded increases in NADH turnover induced over a wide range of Ca(2+) concentrations (0 to approximately 500 nM). These data are consistent with a balanced activation of SR ATPase and mitochondrial ATP synthesis by Ca(2+) that contributes to a homeostasis of energy metabolism metabolites. It is suggested that this balanced activation by cytosolic Ca(2+) is partially responsible for the minimal alteration in energy metabolism intermediates that occurs with changes in cardiac workload in vivo.[Abstract] [Full Text] [Related] [New Search]