These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Benzodiazepine binding studies on living cells: application of small ligands for fluorescence correlation spectroscopy.
    Author: Hegener O, Jordan R, Häberlein H.
    Journal: Biol Chem; 2002 Nov; 383(11):1801-7. PubMed ID: 12530545.
    Abstract:
    We demonstrate the applicability of fluorescence correlation spectroscopy (FCS) for receptor binding studies using low molecular weight ligands on the membranes of living nerve cells. The binding of the benzodiazepine Ro 7-1986/602 (N-des-diethyl-fluorazepam), labeled with the fluorophore Alexa 532, to the benzodiazepine receptor was analyzed quantitatively at the membrane of single rat hippocampal neurons. The values obtained for the dissociation constant Kd = (9.9 +/- 1.9) nm and the rate constant for ligand-receptor dissociation kdisS = (1.28 +/- 0.08) x 10(-3) s(-1) show that there is a specific and high affinity interaction between the dye-labeled ligand (Ro-Alexa) and the receptor site. The binding was saturated at approx. 100 nM and displacement of 10 nM Ro-Alexa, with a 1,000-fold excess of midazolam, showed a non-specific binding of 7-10%. Additionally, two populations of the benzodiazepine receptor that differed in their lateral mobility were detected in the membrane of rat neurons. The diffusion coefficients for these two populations [D(bound1) = (1.32 +/- 0.26) microm2/s; D(bound2) = (2.63 +/- 0.63) x 10(-2) microm2/s] are related to binding sites, which shows a mono-exponential decay in a time-dependent dissociation of the ligand-receptor complex.
    [Abstract] [Full Text] [Related] [New Search]