These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The resting potential of mouse Leydig cells: role of an electrogenic Na+/K+ pump.
    Author: del Corsso C, Varanda WA.
    Journal: J Membr Biol; 2003 Jan 15; 191(2):123-31. PubMed ID: 12533779.
    Abstract:
    Resting potentials (Vm) were measured in mouse Leydig cells, using the whole-cell patch-clamp technique. In contrast to conventional microelectrode measurements, where a biphasic potential was observed, we recorded a stable Vm around -32.2 +/- 1.2 mV (mean +/- SEM, n = 159), at 25 degrees C, and an input resistance larger than 2.7 x 109 W. Although Vm is sensitive to changes in the extracellular concentrations of potassium and chloride, the relationship between Vm and these ions' concentrations cannot be described by either the Goldman-Hodgkin-Katz or the Nernst equation. Perifusing cells with potassium-free solution or 10?3 M ouabain induced a marked depolarization averaging 20.1 +/- 3.2 mV (n = 9) and 23.1 +/- 2.8 mV, (n = 7), respectively. Removal of potassium or addition of ouabain with the cell voltage-clamped at its Vm, resulted in an inwardly directed current, due to inhibition of the Na+K+ATPase. The pump current increased with temperature with a Q10 coefficient of 2.3 and had an average value of -6.5 +/- 0.4 pA (n = 21) at 25 degrees C. Vm also varied strongly with temperature, reaching values as low as -9.2 +/- 1.2 mV (n = 22) at 15 degrees C. Taking the pump current at 25 degrees C and a minimum estimate for the membrane input resistance, we can see that the Na+K+ATPase could directly contribute with 17.7 mV to the Vm of Leydig cells, which is a major fraction of the ?32.2 +/- 1.2 mV (n = 159) observed.
    [Abstract] [Full Text] [Related] [New Search]