These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Insulin-like growth factor I-mediated protection from rapamycin-induced apoptosis is independent of Ras-Erk1-Erk2 and phosphatidylinositol 3'-kinase-Akt signaling pathways. Author: Thimmaiah KN, Easton J, Huang S, Veverka KA, Germain GS, Harwood FC, Houghton PJ. Journal: Cancer Res; 2003 Jan 15; 63(2):364-74. PubMed ID: 12543789. Abstract: The mTOR inhibitor rapamycin induces G1 cell cycle accumulation and p53-independent apoptosis of the human rhabdomyosarcoma cell line Rh1. Insulin-like growth factor I (IGF-I) and insulin, but not epidermal growth factor or platelet-derived growth factor, completely prevented apoptosis of this cell line. Because the Ras-Erk1-Erk2 and phosphatidylinositol 3'-kinase (PI3K)-Akt pathways are implicated in the survival of various cancer cells, we determined whether protection from rapamycin-induced apoptosis by IGF-I requires one or both of these pathways. Despite the blocking of Ras-Erk signaling by the addition of PD 98059 (a MEK1 inhibitor) or by the overexpression of dominant-negative RasN17, IGF-I completely prevented rapamycin-induced death. Inhibition of Ras signaling did not prevent Akt activation by IGF-I. To determine the role of the PI3K-Akt pathway in rescuing cells from apoptosis caused by rapamycin, cells expressing dominant-negative Akt were tested. This mutant protein inhibited IGF-I-induced phosphorylation of Akt and blocked phosphorylation of glycogen synthase kinase 3. The prevention of rapamycin-induced apoptosis by IGF-I was not inhibited by expression of dominant-negative Akt either alone or under conditions in which LY 294002 inhibited PI3K signaling. Furthermore, IGF-I prevented rapamycin-induced apoptosis when the Ras-Erk1-Erk2 and PI3K-Akt pathways were blocked simultaneously. Similar experiments in a second rhabdomyosarcoma cell line, Rh30, using pharmacological inhibitors of PI3K or MEK1, alone or in combination, failed to block IGF-I rescue from rapamycin-induced apoptosis. Therefore, we conclude that a novel pathway(s) is responsible for the IGF-I-mediated protection against rapamycin-induced apoptosis in these rhabdomyosarcoma cells.[Abstract] [Full Text] [Related] [New Search]