These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential expression of D2-like dopamine receptors in the kidney of the spontaneously hypertensive rat.
    Author: Shin Y, Kumar U, Patel Y, Patel SC, Sidhu A.
    Journal: J Hypertens; 2003 Jan; 21(1):199-207. PubMed ID: 12544452.
    Abstract:
    OBJECTIVE: To compare the expression and cellular distribution of D(2)-like dopamine receptors in the kidney of the spontaneously hypertensive rat (SHR) and normotensive Wistar-Kyoto (WKY) rat. DESIGN: Renal D(2)-like receptor protein expression and distribution has not been studied in the SHR. Since changes in D(2)-like receptor expression and/or distribution may contribute to the dysregulation of renal dopamine and D(1A) receptor function, we examined the expression of the three subtypes of D(2)-like receptors (D(2), D(3) and D(4)) in SHR and WKY rat kidneys. METHODS: Western blot analysis and confocal immunocytochemistry with specific polyclonal antipeptide antibodies directed against the receptor subtypes, were used to assess protein expression. RESULTS: There were no differences in protein expression and cellular immunolocalization of the D(2) receptor subtypes between SHR and WKY rats. Expression of the 50 kDa D(3) receptor was reduced in the cortex of the SHR; no differences in D(3) receptor levels were seen in the inner medulla of SHR and WKY rats. The D(4) receptor polypeptides were overexpressed in the cortex of SHR, while in the inner medulla no difference in expression of the D(4) receptor proteins was observed between SHR and WKY rats. Immunocytochemistry also showed increased immunostaining of D(4) receptors in tubular structures in the cortex, but diminished staining in the SHR inner medulla. CONCLUSION: The observed differences in expression and distribution of D(3) and D(4) dopamine receptors between cortex and inner medulla of the kidneys of SHR and WKY rats may contribute to the aberrant state of dopaminergic-mediated natriuresis in SHR.
    [Abstract] [Full Text] [Related] [New Search]