These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Early reactions of light-induced protochlorophyllide and chlorophyllide transformations analyzed in vivo at room temperature with a diode array spectrofluorometer.
    Author: Böddi B, Popovic R, Franck F.
    Journal: J Photochem Photobiol B; 2003 Jan; 69(1):31-9. PubMed ID: 12547494.
    Abstract:
    The steps of protochlorophyllide (Pchlide) photoreduction and subsequent chlorophyllide (Chlide) transformations which occur in the seconds to minutes time-scale were studied using a diode array spectrofluorometer in dark-grown barley leaves. The intensity of the excitation light was varied between 3 and 2,500 micromol m(-2) s(-1) and a series of fluorescence spectra were recorded at room temperature in the seconds and minutes time scales. In certain experiments, 77-K emission spectra were measured with the same equipment. The high quality of the spectra allowed us to run spectral resolution studies which proved the occurrence, at room temperature, of multiple Pchlide and Chlide forms found previously in 77-K spectra. The comparison of the 77-K and room-temperature spectra showed that the fluorescence yields of the nonphotoactive 633-nm Pchlide form and of the Chlide product emitting at 678 nm were temperature independent. The fluorescence intensity of aggregated NADPH-pigment-POR complexes (photoactive 656-nm Pchlide and 693-nm Chlide forms) were strongly increased at 77 K, while that of the NADP(+)-Chlide-POR (684-686-nm Chlide form) was much less affected by temperature. Information was obtained also about the dynamics of the transformation of pigment forms in the light at different photon densities. At low light intensities, the phototransformation of the 642-644-nm Pchlide form was faster than that of the 654-656-nm form. The relative amplitudes of Gaussian components related to different Chlide forms found after exposure to a constant amount of photons strongly depended on the light intensity used. Strong quenching of all Chlide components occurred upon prolonged exposure to high intensity light. These effects are discussed by considering the interconversion processes between different forms of the pigment-protein complexes, their relative fluorescence yields and energy migration processes.
    [Abstract] [Full Text] [Related] [New Search]