These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cold preservation-warm reperfusion perturbs cytosolic calcium ion homeostasis in rat liver sinusoidal endothelial cells. Author: Auger S, Vallerand D, Haddad PS. Journal: Liver Transpl; 2003 Feb; 9(2):150-9. PubMed ID: 12548509. Abstract: Increases in intracellular calcium ion (Ca(2+)) levels of sinusoidal endothelial cell (SEC) may have a crucial role in mediating the expression of adhesion molecules and thus contribute to the microcirculatory disturbances observed in primary graft dysfunction. The effect of changes in the composition and/or temperature of the reperfusion solution on cytosolic Ca(2+) was studied in isolated rat SECs. Cells were preserved in cold University of Wisconsin (UW) solution for 0, 12, or 24 hours and loaded with Fura-2AM dye (Cedarlane, Eugene, OR) at 20 degrees C in N-2-hydroxyethylpiperazine-propanesulfonic acid (HEPES)-buffered physiological solution (HEPES 20 degrees C) or UW solution (UW 20 degrees C). SEC Ca(2+) levels were measured by cytofluorimetry. Basal steady-state Ca(2+) levels were much lower when SECs were loaded in UW 20 degrees C (37 +/- 2 nmol/L) than in HEPES 20 degrees C (114 +/- 32 nmol/L). In unstored controls (0 hour), going from UW 20 degrees C to HEPES 37 degrees C induced a large transient increase (185 +/- 31 nmol/L) in SEC Ca(2+) levels, which was greatly inhibited (43 +/- 13 nmol/L) in Ca(2+)-free HEPES 37 degrees C. A similar large transient increase was observed going from UW 20 degrees C to HEPES 20 degrees C (163 +/- 22 nmol/L). Changing temperature only (20 degrees C to 37 degrees C) in UW or HEPES solution had a much smaller effect on SEC Ca(2+) levels (14 +/- 2 and 60 +/- 18 nmol/L, respectively). These changes were similar in cold-preserved cells. In unstored controls, solution changes greatly attenuated the intensity of subsequent Ca(2+) responses to the purinergic agonist adenosine triphosphate (ATP). Cold preservation (CP) greatly attenuated both the frequency of appearance and intensity of ATP-induced Ca(2+) responses. Hence, changing reperfusion solution composition has a greater impact on SEC steady-state Ca(2+) levels than changing temperature. Cold preservation does not significantly affect changes in SEC steady-state Ca(2+) levels, but greatly impairs the capacity of SECs to subsequently respond to Ca(2+)-mobilizing agonists.[Abstract] [Full Text] [Related] [New Search]