These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expression of Smad4 in the FaDu cell line partially restores TGF-beta growth inhibition but is not sufficient to regulate fibronectin expression or suppress tumorigenicity.
    Author: Hummer BT, Bartlett C, Henry E, Weissman BE.
    Journal: J Cell Physiol; 2003 Mar; 194(3):289-302. PubMed ID: 12548549.
    Abstract:
    Mutations of the Smad4 gene, a member of a group of TGF-beta signal transduction components, occur in several types of cancer suggesting that its inactivation significantly affects TGF-beta responsiveness in these tumors. To further investigate the role of Smad4 with respect to TGF-beta signaling and carcinogenesis, we re-expressed the Smad4 gene in the Smad4-deficient cancer cell line FaDu by microcell-mediated chromosome transfer (MMCT) and retroviral infection to closely approximate physiological protein levels. The Smad4-expressing FaDu clones were then evaluated for TGF-beta responsiveness to assess the role of Smad4 in TGF-beta-induced growth inhibition and target gene regulation. We found that the re-expression of the Smad4 gene by either method partially restored TGF-beta responsiveness in FaDu cells with respect to both growth inhibition and expression of p21WAF1/CIP1 and p15INK4B. However, only the microcell hybrids showed growth retardation in organotypic raft culture and an enhanced ability to upregulate fibronectin. In contrast, the re-expression of Smad4 by either method failed to suppress tumorigenicity. These results suggest that in addition to a homozygous deletion of Smad4, FaDu cells contain additional defects within the TGF-beta signaling pathway, thereby limiting the extent of TGF-beta responsiveness upon Smad4 re-expression and perhaps accounting for the inability to induce p15INK4B to a high level. They also demonstrate the advantages of providing a physiological extracellular environment, when assessing TGFbeta responsiveness.
    [Abstract] [Full Text] [Related] [New Search]