These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: RANK-Fc: a therapeutic antagonist for RANK-L in myeloma.
    Author: Sordillo EM, Pearse RN.
    Journal: Cancer; 2003 Feb 01; 97(3 Suppl):802-12. PubMed ID: 12548579.
    Abstract:
    BACKGROUND: Severe bone destruction due to inappropriate osteoclastogenesis is a prominent feature of multiple myeloma (MM). MM increases bone loss by disrupting the checks that normally control signaling by receptor activator of nuclear factor kappaB ligand (RANK-L, also called TRANCE [tumor necrosis factor-related, activation-induced cytokine], osteoprotegerin ligand [OPG-L], osteoclast differentiation factor [ODF], and tumor necrosis factor superfamily member 11 [TNFSF11]), a TNF-family cytokine required for osteoclast differentiation and activation. RANK-L binds to its functional receptor RANK (TNF receptor superfamily member 11a [TNF RSF11a]) to stimulate osteoclastogenesis. Osteotropic cytokines regulate this process by controlling bone marrow stromal expression of RANK-L. Further control over osteoclastogenesis is maintained by regulated expression of osteoprotegerin (OPG, also called osteoclastogenesis inhibitory factor and TNFRSF11b), a soluble decoy receptor for RANK-L. In normal bone marrow, abundant stores of OPG in stroma, megakaryocytes, and myeloid cells provide a natural buffer against increased RANK-L. MM disrupts these controls by increasing expression of RANK-L and decreasing expression of OPG. Concurrent deregulation of RANK-L and OPG expression is found in bone marrow biopsies from patients with MM but not in specimens from patients with non-MM hematologic malignancies. METHODS: RANK-Fc is a recombinant RANK-L antagonist that is formed by fusing the extracellular domain of RANK to the Fc portion of human immunoglobulin G(1) (hIgG(1)). In vitro, addition of RANK-Fc virtually eliminates the formation of osteoclasts in cocultures of MM with bone marrow and osteoblast/stromal cells. The severe combined immunodeficiency (SCID)/ARH77 mouse model and the SCID-hu-MM mouse model of human MM were used to assess the ability of RANK-Fc to block the development of MM-induced bone disease in vivo. Mice received either RANK-Fc or hIgG(1) 200 microg intravenously three times per week. RESULTS: RANK-Fc limited bone destruction in both the SCID/ARH-77 model and the SCID-hu-MM model. Administration of RANK-Fc also caused a marked reduction in tumor burden and serum paraprotein in SCID-hu-MM mice that was associated with the restoration of OPG and a reduction in RANK-L expression in the xenograft. CONCLUSIONS: MM-induced bone destruction requires increased RANK-L expression and is facilitated by a concurrent reduction in OPG, a natural decoy receptor for RANK-L. Administration of the RANK-L antagonist RANK-Fc limits MM-induced osteoclastogenesis, development of bone disease, and MM tumor progression.
    [Abstract] [Full Text] [Related] [New Search]