These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Behavioral effects of L-5-hydroxytryptophan after destruction of ascending serotonergic pathways in the rat: the role of catecholaminergic neurons. Author: Yunger LM, Harvey JA. Journal: J Pharmacol Exp Ther; 1976 Feb; 196(2):307-15. PubMed ID: 1255478. Abstract: Lesions in the medial forebrain bundle of the rat produced a 68 to 74% decrease in telencephalic serotonin (5-HT) and a 30 to 43% decrease in jump threshold. L-5-Hydroxytryptophan (L-5-HTP; 37.5 mg/kg) returned the 5-HT content and jump threshold of lesioned rats to normal levels. These effects of L-5-HTP were also observed after the inhibition of extracerebral decarboxylase activity with Ro 4-4602 (50 mg/kg). Pretreatment with 6-hydroxydopamine (6-OHDA), which selectively destroys catecholamine neurons, had no effect on the jump threshold of nonlesioned rats nor did it further change the 5-HT content or jump threshold of lesioned rats. Lesioned rats pretreated with 6-OHDA demonstrated an increase in 5-HT content after L-5-HTP; however, their jump threshold remained significantly lower than that of controls. This ability of 6-OHDA to block the behavioral effects of L-5-HTP in lesioned rats was also observed after Ro 4-4602. In rats given Ro 4-4602, the accumulation of 5-HT at 90 minutes after injection of L-5-HTP was significantly correlated (r = 0.98) with total monoamine content. Thus, 6-OHDA pretreatment significantly decreased the net accumulation of 5-HT from L-5-HTP in nonlesioned rats. These rats also demonstrated further decreases in norepinephrine and dopamine content after L-5-HTP. It was concluded that L-5-HTP can be decarboxylated to 5-HT in serotonergic and catecholaminergic neurons and that the behavioral effects of L-5-HTP in lesioned rats may be due to the formation of 5-HT in catecholaminergic neurons where it may act as a "false-transmitter."[Abstract] [Full Text] [Related] [New Search]