These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of lymphoid enhancer factor 1/T-cell factor by mitogen-activated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/beta-catenin signaling.
    Author: Ishitani T, Ninomiya-Tsuji J, Matsumoto K.
    Journal: Mol Cell Biol; 2003 Feb; 23(4):1379-89. PubMed ID: 12556497.
    Abstract:
    The Wnt/beta-catenin signaling pathway regulates many developmental processes by modulating gene expression. Wnt signaling induces the stabilization of cytosolic beta-catenin, which then associates with lymphoid enhancer factor and T-cell factor (LEF-1/TCF) to form a transcription complex that activates Wnt target genes. Previously, we have shown that a specific mitogen-activated protein (MAP) kinase pathway involving the MAP kinase kinase kinase TAK1 and MAP kinase-related Nemo-like kinase (NLK) suppresses Wnt signaling. In this study, we investigated the relationships among NLK, beta-catenin, and LEF-1/TCF. We found that NLK interacts directly with LEF-1/TCF and indirectly with beta-catenin via LEF-1/TCF to form a complex. NLK phosphorylates LEF-1/TCF on two serine/threonine residues located in its central region. Mutation of both residues to alanine enhanced LEF-1 transcriptional activity and rendered it resistant to inhibition by NLK. Phosphorylation of TCF-4 by NLK inhibited DNA binding by the beta-catenin-TCF-4 complex. However, this inhibition was abrogated when a mutant form of TCF-4 was used in which both threonines were replaced with valines. These results suggest that NLK phosphorylation on these sites contributes to the down-regulation of LEF-1/TCF transcriptional activity.
    [Abstract] [Full Text] [Related] [New Search]