These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: cAMP-dependent protein kinase regulates Polysphondylium pallidum development.
    Author: Funamoto S, Anjard C, Nellen W, Ochiai H.
    Journal: Differentiation; 2003 Jan; 71(1):51-61. PubMed ID: 12558603.
    Abstract:
    In eukaryotic cells, the universal second messenger cAMP regulates various aspects of development and differentiation. The primary target for cAMP is the regulatory subunit of cAMP-dependent protein kinase A (PKA), which, upon cAMP binding, dissociates from the catalytic subunit and thus activates it. In the soil amoeba Dictyostelium discoideum, the function of PKA in growth, development and cell differentiation has been thoroughly investigated and substantial information is available. To obtain a more general view, we investigated the influence of PKA on development of the related species Polysphondylium pallidum. Cells were transformed to overexpress either a dominant negative mutant of the regulatory subunit (Rm) from Dictyostelium that cannot bind cAMP, or the catalytic subunit (PKA-C) from Dictyostelium. Cells overexpressing Rm rarely aggregated and the few multicellular structures developed slowly into very small fruiting bodies without branching of secondary sorogens, the prominent feature of Polysphondylium. Few round spores with reduced viability were formed. When mixed with wild-type cells and allowed to develop, the Rm cells were randomly distributed in aggregation streams, but were later found in the posterior region of the culminating slug or were left behind on the surface of the substratum. The PKA-C overexpressing cells exhibited precocious development and formed more aggregates of smaller size. Moreover, expression of PKA-C under the control of the prestalk-specific ecmB promoter of Dictyostelium leads to protrusions from aggregation streams. We conclude that Dictyostelium PKA subunits introduced into Polysphondylium cells are functional as signal components, indicating that a biochemically similar PKA mechanism works in Polysphondylium.
    [Abstract] [Full Text] [Related] [New Search]