These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Variability of stem and branch maintenance respiration in a Pinus pinaster tree. Author: Bosc A, de Grandcourt A, Loustau D. Journal: Tree Physiol; 2003 Mar; 23(4):227-36. PubMed ID: 12566258. Abstract: The relationship between maintenance respiration (Rm) of woody organs and their structural characteristics was explored in adult Pinus pinaster Ait. trees. We measured Rm on 75 stem and branch segments of different ages (from 3 to 24 years) and diameters (from 1 to 35 cm). The temperature response of Rm was derived from field measurements based on a classical exponential function with Q10 = 2.13. Relationships between Rm and the dimensions of the woody organs were analyzed under controlled conditions in the laboratory. The surface area of a woody organ was a better predictor of Rm than volume, but surface area failed to account for the observed within-tree variability of Rm among stems, branches and twigs. Two simple models were proposed to predict the variability of Rm at 15 degrees C in an adult tree. Model 1, a linear function model based on the dry mass and nitrogen concentration of sapwood and phloem tissues, explained most of the variability of Rm in branches and stems (R2 = 0.97). We concluded that the respective contributions of the phloem and sapwood depend on the location and diameter of the woody organ. Model 2, a power-law function model based on the length, diameter and age of the sample, explained the same variance of Rm as Model 1 and is appropriate for scaling Rm to the stand level. Models 1 and 2 appear to explain a larger variability of Rm than models based on stem area or sapwood mass.[Abstract] [Full Text] [Related] [New Search]