These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Changes in Runx2/Cbfa1 expression and activity during osteoblastic differentiation of human bone marrow stromal cells.
    Author: Shui C, Spelsberg TC, Riggs BL, Khosla S.
    Journal: J Bone Miner Res; 2003 Feb; 18(2):213-21. PubMed ID: 12568398.
    Abstract:
    Runx2/Cbfa1 has been identified as a "master gene" controlling osteoblast differentiation. However, its role in inducing the osteoblast phenotype has been characterized primarily in rodent systems. Thus, we examined Runx2/Cbfa1 messenger RNA, protein, and activity levels during osteoblastic differentiation of human bone marrow stromal (BMSC) cells. Semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that the expression of alkaline phosphatase and osteocalcin mRNAs increased in a time-dependent manner with the development of the osteoblast phenotype by these cells (hMS2-15). Type II Runx2/Cbfa1 messenger RNA was found to be constitutively expressed in hMS2-15 cells and not altered during differentiation; there was no detectable expression of the type I Runx2/Cbfa1 transcript. Interestingly, despite the absence of any change in Runx2/Cbfa1 messenger RNA levels during osteoblastic differentiation of these cells, the activity of Runx2/Cbfa1, as assessed by binding to the osteoblast-specific cis-acting element 2 (OSE2), increased markedly at all time-points examined, with the highest activity level seen at day 7. Similar results were observed in primary cultures of less differentiated human marrow-derived mesenchymal stem cells. Immunoprecipitation and Western blot analysis revealed that whereas there was no increase in Runx2/Cbfa1 protein levels with differentiation in hMS2-15 cells, there was an increase in Runx2/Cbfa1 phosphorylation. Thus, in contrast to rodent systems where osteoblast differentiation is associated with increased synthesis of Runx2/Cbfa1, we find that in human BMSC, osteoblastic differentiation is associated primarily with increases in Runx2/Cbfa1 activity, without a change in messenger RNA or protein levels. Our findings also show that the increase in Runx2/Cbfa1 activity occurs through a posttranslational mechanism involving phosphorylation of key residues.
    [Abstract] [Full Text] [Related] [New Search]