These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dissociation of steroid receptor coactivator 1 and nuclear receptor corepressor recruitment to the human glucocorticoid receptor by modification of the ligand-receptor interface: the role of tyrosine 735.
    Author: Stevens A, Garside H, Berry A, Waters C, White A, Ray D.
    Journal: Mol Endocrinol; 2003 May; 17(5):845-59. PubMed ID: 12569182.
    Abstract:
    Within the human glucocorticoid receptor (GR) steroid binding pocket, tyrosine 735 makes hydrophobic contact with the steroid D ring. Substitution of tyrosine735 selectively impairs glucocorticoid transactivation but not transrepression. We now show, using both mammalian two-hybrid and glutathione-S-transferase pull downs, that such substitutions reduce interaction with steroid receptor coactivator 1, both basally and in response to agonist binding. Using a yeast two-hybrid screen we identified one of the three nuclear receptor interacting domains (NCoR-N1) of nuclear receptor corepressor (NCoR) as interacting with the GR C terminus in an RU486-specific manner. This was confirmed in mammalian two-hybrid experiments, and so we used the NCoR-N1 peptide to probe the GR C-terminal conformation. Substitution of Tyr735phe, Tyr735val, and Tyr735 ser, which impaired steroid receptor coactivator 1 (SRC1) interaction, enhanced NCoR-N1 recruitment, basally and after RU486. RU486 did not direct SRC1 recruitment to any of the GR constructs, and dexamethasone did not allow NCoR-N1 recruitment. Using a glutathione-S-transferase pull-down approach, the NCoR-N1 peptide was found to bind the full-length GR constitutively, and no further induction was seen with RU486, but it was reduced by dexamethasone. As both SRC1 and NCoR are predicted to recognize a common hydrophobic cleft in the GR, it seems that changes favorable to one interaction are detrimental to the other, thus identifying a molecular switch.
    [Abstract] [Full Text] [Related] [New Search]