These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Computer simulations of enzyme catalysis: methods, progress, and insights. Author: Warshel A. Journal: Annu Rev Biophys Biomol Struct; 2003; 32():425-43. PubMed ID: 12574064. Abstract: Understanding the action of enzymes on an atomistic level is one of the important aims of modern biophysics. This review describes the state of the art in addressing this challenge by simulating enzymatic reactions. It considers different modeling methods including the empirical valence bond (EVB) and more standard molecular orbital quantum mechanics/molecular mechanics (QM/MM) methods. The importance of proper configurational averaging of QM/MM energies is emphasized, pointing out that at present such averages are performed most effectively by the EVB method. It is clarified that all properly conducted simulation studies have identified electrostatic preorganization effects as the source of enzyme catalysis. It is argued that the ability to simulate enzymatic reactions also provides the chance to examine the importance of nonelectrostatic contributions and the validity of the corresponding proposals. In fact, simulation studies have indicated that prominent proposals such as desolvation, steric strain, near attack conformation, entropy traps, and coherent dynamics do not account for a major part of the catalytic power of enzymes. Finally, it is pointed out that although some of the issues are likely to remain controversial for some time, computer modeling approaches can provide a powerful tool for understanding enzyme catalysis.[Abstract] [Full Text] [Related] [New Search]