These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Kinetics and energetics of the binding between barley alpha-amylase/subtilisin inhibitor and barley alpha-amylase 2 analyzed by surface plasmon resonance and isothermal titration calorimetry. Author: Nielsen PK, Bønsager BC, Berland CR, Sigurskjold BW, Svensson B. Journal: Biochemistry; 2003 Feb 18; 42(6):1478-87. PubMed ID: 12578360. Abstract: The kinetics and energetics of the binding between barley alpha-amylase/subtilisin inhibitor (BASI) or BASI mutants and barley alpha-amylase 2 (AMY2) were determined using surface plasmon resonance and isothermal titration calorimetry (ITC). Binding kinetics were in accordance with a 1:1 binding model. At pH 5.5, [Ca(2+)] = 5 mM, and 25 degrees C, the k(on) and k(off) values were 8.3 x 10(+4) M(-1) s(-1) and 26.0 x 10(-4) s(-1), respectively, corresponding to a K(D) of 31 nM. K(D) was dependent on pH, and while k(off) decreased 16-fold upon increasing pH from 5.5 to 8.0, k(on) was barely affected. The crystal structure of AMY2-BASI shows a fully hydrated Ca(2+) at the protein interface, and at pH 6.5 increase of [Ca(2+)] in the 2 microM to 5 mM range raised the affinity 30-fold mainly due to reduced k(off). The K(D) was weakly temperature-dependent in the interval from 5 to 35 degrees C as k(on) and k(off) were only increasing 4- and 12-fold, respectively. A small salt dependence of k(on) and k(off) suggested a minor role for global electrostatic forces in the binding and dissociation steps. Substitution of a positively charged side chain in the mutant K140L within the AMY2 inhibitory site of BASI accordingly did not change k(on), whereas k(off) increased 13-fold. ITC showed that the formation of the AMY2-BASI complex is characterized by a large exothermic heat (Delta H = -69 +/- 7 kJ mol(-1)), a K(D) of 25 nM (27 degrees C, pH 5.5), and an unfavorable change in entropy (-T Delta S = 26 +/- 7 kJ mol(-1)). Calculations based on the thermodynamic data indicated minimal structural changes during complex formation.[Abstract] [Full Text] [Related] [New Search]