These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Endogenous and exogenous dopamine presynaptically inhibits glutamatergic reticulospinal transmission via an action of D2-receptors on N-type Ca2+ channels.
    Author: Svensson E, Wikström MA, Hill RH, Grillner S.
    Journal: Eur J Neurosci; 2003 Feb; 17(3):447-54. PubMed ID: 12581163.
    Abstract:
    In this study, the effects of exogenously applied and endogenously released dopamine (DA), a powerful modulator of the lamprey locomotor network, are examined on excitatory glutamatergic synaptic transmission between reticulospinal axons and spinal neurons. Bath application of DA (1-50 micro m) reduced the amplitude of monosynaptic reticulospinal-evoked glutamatergic excitatory postsynaptic potentials (EPSPs). The effect of DA was blocked by the D2-receptor antagonist eticlopride, and mimicked by the selective D2-receptor agonist 2,10,11 trihydroxy-N-propyl-noraporphine hydrobromide (TNPA). Bath application of the DA reuptake blocker bupropion, which increases the extracellular level of dopamine, also reduced the monosynaptic EPSP amplitude. This effect was also blocked by the D2-receptor antagonist eticlopride. To investigate if the action of DA was exerted at the presynaptic level, the reticulospinal axon action potentials were prolonged by administering K+ channel antagonists while blocking l-type Ca2+ channels. A remaining Ca2+ component, mainly dependent on N and P/Q channels, was depressed by DA. When DA (25-50 micro m) was applied in the presence of omega-conotoxin GVIA, a toxin specific for N-type Ca2+ channels, it failed to affect the monosynaptic EPSP amplitude. DA did not affect the response to extracellularly ejected d-glutamate, the postsynaptic membrane potential, or the electrical component of the EPSPs. DA thus acts at the presynaptic level to modulate reticulospinal transmission.
    [Abstract] [Full Text] [Related] [New Search]