These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro.
    Author: van Nieuw Amerongen GP, Koolwijk P, Versteilen A, van Hinsbergh VW.
    Journal: Arterioscler Thromb Vasc Biol; 2003 Feb 01; 23(2):211-7. PubMed ID: 12588761.
    Abstract:
    OBJECTIVE: Growth factor-induced angiogenesis involves migration of endothelial cells (ECs) into perivascular areas and requires active remodeling of the endothelial F-actin cytoskeleton. The small GTPase RhoA previously has been implicated in vascular endothelial growth factor (VEGF)-induced signaling pathways, but its role has not been clarified. METHODS AND RESULTS: VEGF induced the activation of RhoA and recruited RhoA to the cell membrane of human ECs. This increase in RhoA activity is necessary for the VEGF-induced reorganization of the F-actin cytoskeleton, as demonstrated by adenoviral transfection of dominant-negative RhoA. Rho kinase mediated this effect of RhoA, as was demonstrated by the use of Y-27632, a specific inhibitor of Rho kinase. Inhibition of Rho kinase prevented the VEGF-enhanced EC migration in response to mechanical wounding but had no effect on basal EC migration. Furthermore, in an in vitro model for angiogenesis, inhibition of either RhoA or Rho kinase attenuated the VEGF-mediated ingrowth of ECs in a 3-dimensional fibrin matrix. CONCLUSIONS: VEGF-induced cytoskeletal changes in ECs require RhoA and Rho kinase, and activation of RhoA/Rho kinase signaling is involved in the VEGF-induced in vitro EC migration and angiogenesis.
    [Abstract] [Full Text] [Related] [New Search]