These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: N-isotope effects on the Raman spectra of Fe(2)S(2) ferredoxin and Rieske ferredoxin: evidence for structural rigidity of metal sites. Author: Rotsaert FJ, Pikus JD, Fox BG, Markley JL, Sanders-Loehr J. Journal: J Biol Inorg Chem; 2003 Feb; 8(3):318-26. PubMed ID: 12589567. Abstract: The diiron ferredoxins have a common diamond-core structure with two bridging sulfides, but differ in the nature of their terminal ligands: either four cysteine thiolates in the Fe(2)S(2) ferredoxins or two cysteine thiolates and two histidine imidazoles in the Rieske ferredoxins. Contributions of the bridging (b) and terminal (t) ligands to the resonance Raman spectra of the Fe(2)S(2) ferredoxins have been distinguished previously by isotopic substitution of the bridging sulfides. We now find that uniform (15)N-labeling of Anabaena Fe(2)S(2) ferredoxin results in shifts of -1 cm(-1) in the Fe-S(t) stretching modes at 282, 340, and 357 cm(-1). The (15)N dependence is ascribed to kinematic coupling of the Fe-S(Cys) stretch with deformations of the cysteine backbone, including the amide nitrogen. No (15)N dependence occurs for the nu(Fe-S(b)) modes at 395 and 426 cm(-1). Similar effects are observed for the Rieske center in T4MOC ferredoxin from the toluene-4-monooxygenase system of Pseudomonas mendocina. Upon selective (15)N-labeling of the alpha-amino group of cysteine, the vibrational modes at 321, 332, 350, and 362 cm(-1) all undergo shifts of -1 to -2 cm(-1), thereby identifying them as combinations of nu(Fe-S(t)) and delta(Cys). These same four modes undergo similar isotope shifts when T4MOC ferredoxin is selectively labeled with (15)N-histidine ((15)N in either the alpha1,delta1 or delta1,epsilon2 positions). Thus, the Fe-S(Cys) stretch must also be undergoing kinematic coupling with vibrations of the Fe-His moiety. The extensive kinematic coupling of iron ligand vibrations observed in both the Fe(2)S(2) and Rieske ferredoxins presumably arises from the rigidity of the protein framework and is reminiscent of the behavior of cupredoxins. In both cases, the structural rigidity is likely to play a role in minimizing the reorganization energy for electron transfer.[Abstract] [Full Text] [Related] [New Search]