These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Key factors affecting spatial variation of methane emissions from freshwater marshes. Author: Ding W, Cai Z, Tsuruta H, Li X. Journal: Chemosphere; 2003 Apr; 51(3):167-73. PubMed ID: 12591249. Abstract: To understand the mechanism for spatial variation of CH(4) emissions from marshes grown with different type of plants in a region and plots within a certain marsh grown with one type of plants, we measured CH(4) emissions from a region in which eutrophic freshwater marshes were divided into three types: Carex lasiocarpa, Carex meyeruana and Deyeuxia angustifolia according to plant type as well as CH(4) concentration in porewater, aboveground plant biomass and stem density in situ in Sanjiang Plain of Northeast China in August 2001. Spatial variation of CH(4) emissions from both different marshes in a region and different plots within a certain marsh was high. The flux rates of CH(4) emissions from three marshes ranged from 17.2 to 66.5 mg CH(4) m(-2)h(-1) with 34.76% of variation coefficient, whereas the values in Carex lasiocarpa, Carex meyeriana and Deyeuxia angustifolia marshes varied from 21.6 to 66.5 (39.61%), from 17.2 to 45.0 (29.26%) and from 19.1 to 33.0 mg CH(4) m(-2)h(-1) (17.51%), respectively. Both the flux rates and spatial variation of CH(4) emissions strongly increased as standing water depth increased significantly. Standing water depth greatly governed the spatial variation of CH(4) emissions from different marshes in a region by changing the amount of plant litters inundated in standing water, which provided labile organic C for methanogens and controlled CH(4) concentrations in porewater. Moreover, the aboveground plant biomass determined spatial variation of CH(4) emissions from plots within a certain marsh by controlling the pathways (stem density) of CH(4) emissions from the marsh into the atmosphere.[Abstract] [Full Text] [Related] [New Search]