These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Quantum oscillations in two coupled charge qubits.
    Author: Pashkin YA, Yamamoto T, Astafiev O, Nakamura Y, Averin DV, Tsai JS.
    Journal: Nature; 2003 Feb 20; 421(6925):823-6. PubMed ID: 12594507.
    Abstract:
    A practical quantum computer, if built, would consist of a set of coupled two-level quantum systems (qubits). Among the variety of qubits implemented, solid-state qubits are of particular interest because of their potential suitability for integrated devices. A variety of qubits based on Josephson junctions have been implemented; these exploit the coherence of Cooper-pair tunnelling in the superconducting state. Despite apparent progress in the implementation of individual solid-state qubits, there have been no experimental reports of multiple qubit gates--a basic requirement for building a real quantum computer. Here we demonstrate a Josephson circuit consisting of two coupled charge qubits. Using a pulse technique, we coherently mix quantum states and observe quantum oscillations, the spectrum of which reflects interaction between the qubits. Our results demonstrate the feasibility of coupling multiple solid-state qubits, and indicate the existence of entangled two-qubit states.
    [Abstract] [Full Text] [Related] [New Search]