These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gene transfer-induced local heme oxygenase-1 overexpression protects rat kidney transplants from ischemia/reperfusion injury.
    Author: Blydt-Hansen TD, Katori M, Lassman C, Ke B, Coito AJ, Iyer S, Buelow R, Ettenger R, Busuttil RW, Kupiec-Weglinski JW.
    Journal: J Am Soc Nephrol; 2003 Mar; 14(3):745-54. PubMed ID: 12595512.
    Abstract:
    Heme oxygenase-1 (HO-1) overexpression using gene transfer protects rat livers against ischemia/reperfusion (I/R) injury. This study evaluates the effects of Ad-HO-1 gene transfer in a rat renal isograft model. Donor LEW kidneys were perfused with Ad-HO-1, Ad-beta-gal, or PBS, stored at 4 degrees C for 24 h, and transplanted orthotopically into LEW recipients, followed by contralateral native nephrectomy. Serum creatinine, urine protein/creatinine ratios, severity of histologic changes, HO-1 mRNA/protein expression, and HO enzymatic activity were analyzed. Ad-HO-1 gene transfer conferred a survival advantage when compared with PBS- and Ad-beta-gal-treated controls, with median survival of 100, 7, and 7 d, respectively (P < 0.01). Serum creatinine levels were elevated at day 7 in all groups (range, 2.2 to 5.8 mg/dl) but recovered to 1.0 mg/dl by day 14 (P < 0.01) in Ad-HO-1 group, which was sustained thereafter. Urine protein/creatinine ratio at day 7 was elevated in both PBS and Ad-beta-gal, as compared with the Ad-HO-1 group (12.0 and 9.8 versus 5.0; P < 0.005); histologically, ATN and glomerulosclerosis was more severe in Ad-beta-gal group at all time points. Reverse transcriptase-PCR-based HO-1 gene expression was significantly increased before reperfusion (P < 0.001) and remained increased in the Ad-HO-1-treated group for 3 d after transplantation. Concomitantly, HO enzymatic activity was increased at transplantation and at 3 d posttransplant in the Ad-HO-1 group, compared with Ad-beta-gal controls (P < 0.05); tubular HO-1 expression was discernible early posttransplant in the Ad-HO-1 group alone. These findings are consistent with protective effects of HO-1 overexpression using a gene transfer approach against severe renal I/R injury, with reduced mortality and attenuation of tissue injury.
    [Abstract] [Full Text] [Related] [New Search]