These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The importance of cochlear processing for the formation of auditory brainstem and frequency following responses.
    Author: Dau T.
    Journal: J Acoust Soc Am; 2003 Feb; 113(2):936-50. PubMed ID: 12597187.
    Abstract:
    A model for the generation of auditory brainstem responses (ABR) and frequency following responses (FFRs) is presented. The model is based on the concept introduced by Goldstein and Kiang [J. Acoust. Soc. Am. 30, 107-114 (1958)] that evoked potentials recorded at remote electrodes can theoretically be given by convolution of an elementary unit waveform (unitary response) with the instantaneous discharge rate function for the corresponding unit. In the present study, the nonlinear computational auditory-nerve model recently developed by Heinz et al. [ARLO 2(3), 91-96 (2001)] was used to calculate the instantaneous discharge rate ri(t) for fibers i in the frequency range from 0.1 and 10 kHz. The summed activity across frequency was convolved with a unitary response which is assumed to reflect contributions from different cell populations within the auditory brainstem, recorded at a given pair of electrodes on the scalp. Predicted potential patterns are compared with experimental data for a number of stimulus and level conditions. Clicks, chirps as defined in Dau et al. [J. Acoust. Soc. Am. 107, 1530-1540 (2000)], long-duration stimuli comprising the chirp, as well as tones and slowly varying tonal sweeps were considered. The results demonstrate the importance of considering the effects of the basilar-membrane traveling wave and auditory-nerve processing for the formation of ABR and FFR. Specifically, the results support the hypothesis that the FFR to low-frequency tones represents synchronized activity mainly stemming from mid- and high-frequency units at more basal sites, and not from units tuned to frequencies around the signal frequency.
    [Abstract] [Full Text] [Related] [New Search]