These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ethanol metabolism and lipid synthesis by isolated liver cells from fed rats.
    Author: Selmer J, Grunnet N.
    Journal: Biochim Biophys Acta; 1976 Mar 25; 428(1):123-37. PubMed ID: 1260014.
    Abstract:
    1. The fatty acid synthesis in isolated liver cells from fed rats was studied with tritiated water as the radioactive precursor. The cells incorporated 3H20 at a rate of 1.26 mumol per min per g packed cells. 2. Addition of ethanol caused a 20% decrease in the incorporation of tritium into fatty acids. The decrease was correlated to the increase in the NAD-redox level. Probably, the decreased tritium incorporation into fatty acids during ethanol metabolism is due to a decrease in the specific activity of the NADPH used for the synthesis of fatty acids, rather than to a real inhibition of the fatty acid synthesis. 3. Ethanol oxidation via NADPH-consuming pathways and ethanol per se at a concentration of 80 mM had no effect upon the incorporation of tritium into fatty acids. 4. Fructose in a concentration of 15 mM inhibited the fatty acid synthesis by 75%, and this inhibition was further augmented by ethanol. 5. The ioslated rat liver cells oxidized ethanol at a rate of 2.72, 2.93 and 3.48 mumol per min per g packed cells at 5, 20 and 80 mM ethanol, respectively. Fructose had no effect upon ethanol oxidation neither at low nor at high concentrations of ethanol. 6. Ethanol oxidation via the non alcohol dehydrogenase pathway(s) may involve a transfer of reducing equivalents from mitochondrial NADH to cyctosolic NADP+ as judged from measurements of metabolite levels. This conclusion is supported by determinations of 14C yield in glucose from [1-14C] ethanol, and the results are taken as evidence for the presence of hydrogen shuttle activity during metabolism of ethanol, catalyzed by the NAD-dependent alcohol dehydrogenase. A metabolic scheme is proposed to account for the observed changes at low and high concentrations of ethanol.
    [Abstract] [Full Text] [Related] [New Search]