These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transient inhibition by ribose 5-phosphate of photosynthetic O2 evolution in a reconstituted chloroplast system. Author: Slabas AR, Walker DA. Journal: Biochim Biophys Acta; 1976 Apr 09; 430(1):154-64. PubMed ID: 1260044. Abstract: Photosynthetic oxygen evolution by a reconstituted chloroplast system utilising sn-phospho-3-glycerol (3-phosphoglycerate) ceases upon the addition of ribose 5-phosphate even though the presence of this metabolite permits a rapid and immediate CO2 fixation. The period of cessation is appreciable at 0.1 mM ribose 5-phosphate. It is lengthened as the amount of added ribose 5-phosphate is increased and by the addition of dithiothreitol, a known activator of ribulose-5-phosphate kinase. Ribulose 1,5-bisphosphate is without effect. A similar interruption of O2 evolution may also be brought about by the addition of ADP or by ADP-generating systems such as glucose plus hexokinase. Spectrophotometric experiments indicate that the reoxidation of NADPH in the presence of sn-phospho-3-glycerol is similarly affected. The transient inhibition by ribose 5-phosphate is not observed in the presence of an active ATP-generating system or in the presence of sufficient DL-glyceraldehyde to inhibit ribulose-5-phosphate kinase activity. It is concluded that ribose 5-phosphate inhibits photosynthetic O2 evolution by adversely affecting the steady-state ATP/ADP ratio and consequently the reduction of sn-phospho-3-glycerol to glyceraldehyde 3-phosphate. The results are discussed in their relation to ADP regulation of photosynthetic carbon assimilation and metabolite transport.[Abstract] [Full Text] [Related] [New Search]